Shielding gases are inert or semi- that are commonly used in several welding processes, most notably gas metal arc welding and gas tungsten arc welding (GMAW and GTAW, more popularly known as MIG (Metal Inert Gas) and TIG (Tungsten Inert Gas), respectively). Their purpose is to protect the weld area from oxygen and water vapour. Depending on the materials being welded, these atmospheric gases can reduce the quality of the weld or make the welding more difficult. Other arc welding processes use alternative methods of protecting the weld from the atmosphere as well – shielded metal arc welding, for example, uses an electrode covered in a flux that produces carbon dioxide when consumed, a semi-inert gas that is an acceptable shielding gas for welding steel.
Improper choice of a welding gas can lead to a porous and weak weld, or to excessive spatter; the latter, while not affecting the weld itself, causes loss of productivity due to the labor needed to remove the scattered drops.
If used carelessly, shielding gasses can displace oxygen, causing hypoxia and potentially death.
Argon is the most common shielding gas, widely used as the base for the more specialized gas mixes. Advanced welding supply gas type guide
Carbon dioxide is the least expensive shielding gas, providing deep penetration, however it negatively affects the stability of the arc and enhances the molten metal's tendency to create droplets (spatter). What You Should Know About Shielding Gas Carbon dioxide in concentration of 1-2% is commonly used in the mix with argon to reduce the surface tension of the molten metal. Another common blend is 25% carbon dioxide and 75% argon for GMAW. Choosing a Shielding Gas for Flux-Cored Welding
Helium is lighter than air; larger flow rates are required. It is an inert gas, not reacting with the molten metals. Its thermal conductivity is high. It is not easy to ionize, requiring higher voltage to start the arc. Due to higher ionization potential it produces hotter arc at higher voltage, provides wide deep bead; this is an advantage for aluminium, magnesium, and copper alloys. Other gases are often added. Blends of helium with addition of 5–10% of argon and 2–5% of carbon dioxide ("tri-mix") can be used for welding of stainless steel. Used also for aluminium and other non-ferrous metals, especially for thicker welds. In comparison with argon, helium provides more energy-rich but less stable arc. Helium and carbon dioxide were the first shielding gases used, since the beginning of World War 2. Helium is used as a shield gas in laser welding for carbon dioxide lasers. Helium is more expensive than argon and requires higher flow rates, so despite its advantages it may not be a cost-effective choice for higher-volume production. Bernard – Great Welds Need The Right Gas: How Shielding Gas Can Make Or Break Your Weld . Bernardwelds.com. Retrieved on 2010-02-08. Pure helium is not used for steel, as it causes an erratic arc and encourages spatter.
Oxygen is used in small amounts as an addition to other gases; typically as 2–5% addition to argon. It enhances arc stability and reduces the surface tension of the molten metal, increasing wetting of the solid metal. It is used for spray transfer welding of mild , alloy steel and . Its presence increases the amount of slag. Argon-oxygen (Ar-O2) blends are often being replaced with argon-carbon dioxide ones. Argon-carbon dioxide-oxygen blends are also used. Oxygen causes oxidation of the weld, so it is not suitable for welding aluminium, magnesium, copper, and some exotic metals. Increased oxygen makes the shielding gas oxidize the electrode, which can lead to porosity in the deposit if the electrode does not contain sufficient . Excessive oxygen, especially when used in application for which it is not prescribed, can lead to brittleness in the heat affected zone. Argon-oxygen blends with 1–2% oxygen are used for austenitic stainless steel where argon-CO2 can not be used due to required low content of carbon in the weld; the weld has a tough oxide coating and may require cleaning.
Hydrogen is used for welding of nickel and some stainless steels, especially thicker pieces. It improves the molten metal fluidity, and enhances cleanness of the surface. It is added to argon in amounts typically under 10%. It can be added to argon-carbon dioxide blends to counteract the oxidizing effects of carbon dioxide. Its addition narrows the arc and increases the arc temperature, leading to better weld penetration. In higher concentrations (up to 25% hydrogen), it may be used for welding conductive materials such as copper. However, it should not be used on steel, aluminum or magnesium because it can cause porosity and hydrogen embrittlement; its application is usually limited only to some stainless steels.
Nitric oxide addition serves to reduce production of ozone. It can also stabilize the arc when welding aluminium and high-alloyed stainless steel.
Other gases can be used for special applications, pure or as blend additives; e.g. sulfur hexafluoride or dichlorodifluoromethane. Shielding gas for laser welding – Patent 3939323. Freepatentsonline.com. Retrieved on 2010-02-08.
Sulfur hexafluoride can be added to shield gas for aluminium welding to bind hydrogen in the weld area to reduce weld porosity. Method of welding material with reduced porosity – Patent Application 20070045238. Freepatentsonline.com (2005-08-29). Retrieved on 2010-02-08.
Dichlorodifluoromethane with argon can be used for protective atmosphere for melting of aluminium-lithium alloys. Blanketing atmosphere for molten aluminum-lithium or pure lithium – Patent EP0268841. Freepatentsonline.com. Retrieved on 2010-02-08. It reduces the content of hydrogen in the aluminium weld, preventing the associated porosity. This gas, however, is being used less because it has a strong ozone depletion potential.
The desirable rate of gas flow depends primarily on weld geometry, speed, current, the type of gas, and the metal transfer mode being utilized. Welding flat surfaces requires higher flow than welding grooved materials, since the gas is dispersed more quickly. Faster welding speeds, in general, mean that more gas needs to be supplied to provide adequate coverage. Additionally, higher current requires greater flow, and generally, more helium is required to provide adequate coverage than argon. Perhaps most importantly, the four primary variations of GMAW have differing shielding gas flow requirements—for the small weld pools of the short circuiting and pulsed spray modes, about 10 litre/min (20 ft3/hour) is generally suitable, while for globular transfer, around 15 L/min (30 ft3/h) is preferred. The spray transfer variation normally requires more because of its higher heat input and thus larger weld pool; along the lines of 20–25 L/min (40–50 ft3/h).
|
|